

Radionuclide decay scheme modelling in EGSnrc

Reid Townson, Frédéric Tessier, Raphael Galea

Measurement Science and Standards National Research Council Canada

Conseil national de National Research Council Canada recherches Canada

Simulation = geometry + source (+...)

An accurate particle source is key

z

Locaton Direction Energy ... and more?

Radionuclide decays are complex to model

NRC CNRC

Introducing: EGS_RadionuclideSource

Radionuclide data from LNHB

- Data from Laboratoire Natonal Henri Becquerel (LNHB)
	- http://www.nucleide.org/DDEP_WG/DDEPdata.htm

Tables of evaluated data and comments on evaluation Pages updated by the Laboratoire National Henri Becquerel All questions about the data must be sent to the authors. See chapter Addresses.

updated: 3rd March 2017 newly added: Pr-142 recently updated: Co-57, Xe-133m ASCII files updated on: 24/06/2016 (221 nuclides in table, sorted by alphabetical order / atomic number / mass number / edition date)

(History of older evaluations, sorted by alphabetical order)

Subscribe to DDEP RSS feed

("Type of updates: N - new evaluation; 1 - update in comments only; 2 - minor update in table; 3 - major update in table)

 0.15 $P-32$ P-33

The ENSDF format is widely used

Evaluated Nuclear Structure Data File (ENSDF)

Radionuclide production branches

- Disintegration modes \blacklozenge
	- β ⁻ decay
	- β^+ decay
	- Electron capture decay
	- α decay \rightarrow Decay is modelled but α 's are discarded \bullet
- Gamma transitions
	- Y photon emission
	- Conversion electron emission \bullet

Atomic relaxation cascades

- Electron rearrangement
	- fluorescent photons, Auger electrons, Coster-Kronig electrons

 \rightarrow Option 1: Statistical model using ENSDF data

Option 2: Sample initial vacancy (correlated with transition) Simulate entre relaxaton cascade Uses EGSnrc relaxations (EADL database)

Beta energies sampled from Fermi distributon

Coincidence count "realistically"

- All particles are assigned a time of source emission
- No time of flight modelling
- Currently no gamma-gamma directional correlations

source->getTime()

$$
t_{\text{disintegration}} = t_{\text{disintegration-1}} - \ln(1 - u)/A
$$

$$
t_{\text{IT}} = t_{\text{disintegration}} - \frac{t_{\frac{1}{2},\text{IT}} \cdot \ln(1 - u)}{\ln(2)}
$$

NAC-CNAC

Coincidence count "exactly"

• All emissions & secondaries resulting from the same disintegration return the same "shower index"

source->getShowerIndex()

The input file is easy

:start source:

name = my mixture

 library = egs_radionuclide_source activity = total activity of mixture, assumed constant

... optional arguments ...

 :start shape: definition of the source shape :stop shape:

 :start spectrum: Next slide... :stop spectrum:

:stop source:

The input file is easy

:start source:

... (previous) ...

:start spectrum:

 type = radionuclide nuclide = name of the nuclide (e.g. Sr-90)

 relative activity = [optional] the relative activity (sampling probability) for this nuclide in a mixture

```
:stop spectrum:
```
:start spectrum: type $=$ radionuclide $nucle$ = next nuclide (e.g. Y-90) relative activity = ... :stop spectrum:

:stop source:

Calibration coefficients for the Vinten chamber

EGSnrc cumulates energy depositons

- EGSnrc reports energy deposited in nitrogen [eV]: $E_{\rm g}$
- Convert to total charge [C]: $Q = \left(\frac{E_{\text{g}}}{W}\right) e$

 $W=34.8\pm0.2\,\,\rm{eV}$ (average energy to create ion pair in nitrogen)

The charge is deposited for exactly N decays

$$
k_{\rm mc} = \frac{I \ (\text{pA})}{A \ (\text{MBq})} = 10^{18} \cdot \frac{Q}{N} = 10^{18} e \, \frac{(E_{\rm g}/N)}{W}
$$

nuclide

Now we know where to focus

- \blacklozenge In the experiment:
	- Radio-impurities?
	- Re-standardization by primary method?
	- Sharpen uncertainties by testing different conditions

- \blacklozenge In the model:
	- Pure water was used as the source solution (even for gases!)
	- Refinement of materials, geometries, source modelling etc.

Thanks to Patrick Saull for his help with beta spectra

Thanks to LNHB for providing ENSDF data

Measurement Science and Standards National Research Council Canada **Reid Townson, Frédéric Tessier, Raphael Galea**

Conseil national de National Research Council Canada recherches Canada

ENSDF records converted to c++ objects

egs++ design is object-oriented

It's a tree-like structure

Public Member Functions

Simulations provide experimental refinement

- An EGSnrc model of your detector allows you to:
	- Validate experiments
	- Predict detector response for unknown isotopes
	- Refine experimental uncertainty budget
		- Test geometrical variations
		- Test manufacturing tolerances
		- Test radioimpurity effects

Calculating calibration factors: an example

Let's try this the "old way"

Use a series of monoenergetic simulations

Interpolate response

Perform weighted sum using relatve intensites

$$
k_{1} = 0.899 \t P_{1} = 3.09
$$
\n
$$
k_{2} = 0.917 \t P_{2} = 38.1
$$
\n
$$
k_{3} = 1.877 \t P_{3} = 20.96 \t k_{\text{hand}} = 1.533
$$
\n
$$
k_{4} = 2.146 \t P_{4} = 2.37
$$
\n
$$
k_{5} = 3.142 \t P_{5} = 16.6
$$
\n
$$
k_{6} = 4.140 \t P_{6} = 4.59
$$

Perform weighted sum using relatve intensites

$$
k_{1} = 0.899 \t P_{1} = 3.09
$$
\n
$$
k_{2} = 0.917 \t P_{2} = 38.1
$$
\n
$$
k_{3} = 1.877 \t P_{3} = 20.96 \t \t k_{\text{hand}} = 1.533
$$
\n
$$
k_{4} = 2.146 \t P_{4} = 2.37 \t k_{\text{band}} = 1.583
$$
\n
$$
k_{5} = 3.142 \t P_{5} = 16.6 \t k_{\text{exp}} = 1.583
$$
\n
$$
k_{6} = 4.140 \t P_{6} = 4.59
$$

The radionuclide source models a bit more

- M.-M. Bé, V. Chisté, C. Dulieu, M.A. Kellett, X. Mougeot, A. Arinc, V.P. Chechev, N.K. Kuzmenko, T. Kibédi, A. Luca, and A.L. Nichols. Table of Radionuclides, volume 8 of Monographie BIPM-5. Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92310 Sèvres, France, 2016.

Closer agreement!

Simulations provide answers

- With an accurate EGSnrc model at our disposal, we can now look at the questons:
	- How does the uncertainty on a parameter affect measurement?
	- What is the calibration factor for a radionuclide not previously measured?
	- What is the calibration factor for a non-standard geometry?
	- What is the effect of radioimpurities?

Simulations can produce an absolute result

There was a problem with the detector model

- \bullet Initially, the modelled detector response was systematically low
	- An energy-dependent difference $(27%)$

- This indicates a physical discrepancy:
	- Material properties (density, composition)?
	- Geometrical (wall thicknesses)?

We increased the gas pressure

- Varying within manufacturer tolerances could not account
- There was no tolerance on the nitrogen pressure (nominal 1MPa)
	- Increasing the pressure \sim 7% worked (chi-squared optimized)

Therefore, our model **predicts** a 7% higher pressure

Turns out it's corroborated

 Strikingly, a previous group also found a 7.2% higher pressure by simulations of a similar chamber using PENELOPE

A De Vismes and MN Amiot. Towards absolute activity measurements by ionisation chambers using the penelope monte-carlo code. Applied radiation and isotopes, $59(4):267-272, 2003.$

After a few minutes on the cluster...

