

Radionuclide decay scheme modelling in EGSnrc

Reid Townson, Frédéric Tessier, Raphael Galea

Measurement Science and Standards National Research Council Canada

National Research Conseil national de council Canada recherches Canada

Simulation = geometry + source (+...)

NRC.CNRC

An accurate particle source is key

Location Direction Energy ... and more?

Radionuclide decays are complex to model

NCCNC

Introducing: EGS_RadionuclideSource

NCCNC

Radionuclide data from LNHB

- Data from Laboratoire National Henri Becquerel (LNHB)
 - http://www.nucleide.org/DDEP_WG/DDEPdata.htm

Tables of evaluated data and comments on evaluation Pages updated by the Laboratoire National Henri Becquerel All questions about the data must be sent to the authors. See chapter <u>Addresses</u>.

updated: 3rd March 2017 newly added: Pr-142 recently updated: Co-57, Xe-133m ASCII files updated on: 24/06/2016 (221 nuclides in table, sorted by alphabetical order / <u>atomic number</u> / <u>mass number</u> / <u>edition date</u>)

(History of older evaluations, sorted by alphabetical order)

Subscribe to DDEP RSS feed

Please cite our evaluations using the follow Publication Vol. CEA Report - Table de Radionucléides Monographie BIPM-5 - Table of Radionuclides, vol. 2 Monographie BIPM-5 - Table of Radionuclides, vol. 2 Monographie BIPM-5 - Table of Radionuclides, vol. 3 4 Monographie BIPM-5 - Table of Radionuclides, vol. 4 5 Monographie BIPM-5 - Table of Radionuclides, vol. 8 Monographie BIPM-5 - Table of Radionuclides, vol. (Monographie BIPM-5 - Table of Radionuclides, vol. 1 Monographie BIPM-5 - Table of Radionuclides, vol.

> O-15 P-32 P-33

("Type of updates: N - new evaluation; 1 - update in comments only; 2 - minor update in table; 3 - major update in table)

Nuclide		Tables	Comments	ASCII files			Val	UnDete	T
		Tables		ENSDE	PenNuc	Lara	V01.	opuate	туре
Ac-225	²²⁵ Ac	table	<u>comments</u>	ensdf	pennuc	<u>txt</u>	5	26/08/2009	3
Ac-227	²²⁷ Ac	table	<u>comments</u>	<u>ensdf</u>	pennuc	<u>txt</u>	4	16/02/2009	2
Ac-228	²²⁸ Ac	ala table	<u>comments</u>	<u>ensdf</u>	pennuc	txt	6	22/01/2010	3
Ag-108	¹⁰⁸ Ag	table	<u>comments</u>	<u>ensdf</u>	pennac	<u>txt</u>	3	4/09/2006	2

The ENSDF format is widely used

Evaluated Nuclear Structure Data File (ENSDF)

67ZN	e	57GA EC DE	CAY (3.2613	3D)							
	_										
67ZN 1	Ľ	Auger ele	ctrons and	X ray	y energi	les and e	emis	sion intens:	ities:		
67ZN 1	C	{UE1	nergy (keV)	} -	{U Inter	nsity}	(U I	ine}			
67ZN 3	Ľ										
67ZN 1	C	8.6	1587		17.0	6	XKA	12			
67ZN 3	C	8.6	3896		33.0	12	XKA	1			
• • •											
67ZN 1	C										
67ZN 3	C	7.2	1-7.55	11			KLI	AUGER			
67ZN 3	C	8.3	1-8.63	11	60.4	21	KLX	AUGER			
67ZN 7	C	9.3	9-9.65	1]			KXY	AUGER			
67ZN 7	C	0.7	32-0.997		167.5	21	LA	UGER			
67GA	Ρ	0.0	3/2-		3.	.2613 D	5		1000.8	12	
67ZN	N	1.0	1.0	1		1.0					
67ZN	L	0	5/2-		S	STABLE					
67ZN	Е			3.3	3 32	26.532					
67zn2	Е	CK=0.8836	15\$CL=0.	0989	12\$C	4=0.0164		4\$CN=0.0011	1		
67ZN	L	93.31	1/2-		9.	00 US	4				
67zn	Е			50	.5 17	75.261					
67zn2	Е	CK=0.8834	15\$CL=0.	0991	12\$C	4=0.0164		4\$CN=0.0011	1		
67ZN	G	93.307	1238.1	7E2				0.854 12	2		
67zn2	G	KC=0.748	11\$LC=0.	0922	13\$M0	c=0.01300) 1	9\$NC=0.00038	38 6		
67ZN	L	184.58	3/2-		1.	028 NS	14				
67ZN	Е			22	.3 27	75.523					
67ZN2	Е	CK=0.8832	15\$CL=0.	0993	12\$C	4=0.0164		4\$CN=0.0011	1		
67ZN	G	91.263	153.09	7M1-	+E2	0.123	25	0.091	6		
	-										

NCCNC

Radionuclide production branches

- Disintegration modes
 - β⁻ decay
 - β^+ decay
 - Electron capture decay
 - $\alpha \text{ decay} \rightarrow \text{Decay}$ is modelled but α 's are discarded
- Gamma transitions
 - Y photon emission
 - Conversion electron emission

Atomic relaxation cascades

- Electron rearrangement
 - fluorescent photons, Auger electrons, Coster-Kronig electrons

Option 1: Statistical model using ENSDF data

Option 2: Sample initial vacancy (correlated with transition) Simulate entire relaxation cascade Uses EGSnrc relaxations (EADL database)

Beta energies sampled from Fermi distribution

NCCNC

Coincidence count "realistically"

- All particles are assigned a time of source emission
- No time of flight modelling
- Currently no gamma-gamma directional correlations

source->getTime()

$$t_{\text{disintegration}} = t_{\text{disintegration-1}} - \ln(1-u)/A$$
$$t_{\text{IT}} = t_{\text{disintegration}} - \frac{t_{\frac{1}{2},\text{IT}} \cdot \ln(1-u)}{\ln(2)}$$

NCCNC

Coincidence count "exactly"

 All emissions & secondaries resulting from the same disintegration return the same "shower index"

source->getShowerIndex()

The input file is easy

:start source:

name = my mixture

library = egs_radionuclide_source activity = total activity of mixture, assumed constant

... optional arguments ...

:start shape: definition of the source shape :stop shape:

:start spectrum: Next slide... :stop spectrum:

:stop source:

The input file is easy

```
:start source:
    ... (previous) ...
    :start spectrum:
                          = radionuclide
           type
           nuclide
                            = name of the nuclide (e.g. Sr-90)
           relative activity = [optional] the relative activity (sampling
                        probability) for this nuclide in a mixture
    :stop spectrum:
    :start spectrum:
                                = radionuclide
           type
           nuclide
                                = next nuclide (e.g. Y-90)
           relative activity = ...
    :stop spectrum:
```

:stop source:

Calibration coefficients for the Vinten chamber

EGSnrc cumulates energy depositions

- EGSnrc reports energy deposited in nitrogen [eV]: E_{g}
- Convert to total charge [C]: $Q = \left(\frac{E_g}{W}\right) e$

 $W=34.8\pm0.2\,\,{
m eV}$ (average energy to create ion pair in nitrogen)

• The charge is deposited for exactly N decays

$$k_{\rm mc} = \frac{I ~(pA)}{A ~(MBq)} = 10^{18} \cdot \frac{Q}{N} = 10^{18} e \, \frac{(E_{\rm g}/N)}{W}$$

nuclide

Now we know where to focus

- In the experiment:
 - Radio-impurities?
 - Re-standardization by primary method?
 - Sharpen uncertainties by testing different conditions

- In the model:
 - Pure water was used as the source solution (even for gases!)
 - Refinement of materials, geometries, source modelling etc.

NCCNRC

Thanks to Patrick Saull for his help with beta spectra

Thanks to LNHB for providing ENSDF data

Reid Townson, Frédéric Tessier, Raphael Galea

Measurement Science and Standards National Research Council Canada

National Research Conseil national de Council Canada recherches Canada

ENSDF records converted to c++ objects

egs++ design is object-oriented

It's a tree-like structure

Public Member Functions

	GammaRecord (vector< string > ensdf, ParentRecord *myParent, NormalizationRecord *myNormalization, LevelRecord *myLevel)
	GammaRecord (GammaRecord *gamma)
double	getDecayEnergy () const
double	getTransitionIntensity () const
void	setTransitionIntensity (double newIntensity)
int	getCharge () const
LevelRecord *	getFinalLevel () const
void	setFinalLevel (LevelRecord *newLevel)
void	incrNumSampled ()
EGS_I64	getNumSampled () const

Simulations provide experimental refinement

- An EGSnrc model of your detector allows you to:
 - Validate experiments
 - Predict detector response for unknown isotopes
 - Refine experimental uncertainty budget
 - Test geometrical variations
 - Test manufacturing tolerances
 - Test radioimpurity effects

NCCNRC

Calculating calibration factors: an example

Let's try this the "old way"

NC CNRC

Use a series of monoenergetic simulations

NCCNC

Interpolate response

NRC·CNRC

Perform weighted sum using relative intensities

Perform weighted sum using relative intensities

$$\begin{array}{ll} k_1 = 0.899 & P_1 = 3.09 \\ k_2 = 0.917 & P_2 = 38.1 \\ k_3 = 1.877 & P_3 = 20.96 & & \\ k_4 = 2.146 & P_4 = 2.37 \\ k_5 = 3.142 & P_5 = 16.6 \\ k_6 = 4.140 & P_6 = 4.59 \end{array} \quad \begin{array}{ll} k_{and} = 1.533 \\ k_{exp} = 1.583 \\ k_{exp} = 1.583 \end{array}$$

The radionuclide source models a bit more

		Energy keV	Electrons per 100 disint.		
e _{AL}	(Zn)	0,732 - 0,997	167,5(21)		
e _{AK}	(Zn)		60,4 (21)		
	KLL	7,21 - $7,55$	}		
	KLX	8,31 - $8,63$	}		
	KXY	9,39 - 9,65	}		
ес _{2,1 К}	(Zn)	81,604 (15)	0,250 (16)		
ес _{1.0 К}	(Zn)	83,651 (5)	28,4(7)		
ec _{1.0 L}	(Zn)	92,116 - 93,290	3,55(9)		
ес _{1,0 М}	(Zn)	93,174 - 93,302	0,522 (13)		
ec _{2.0 K}	(Zn)	174,918 (17)	0,316(40)		
ec _{3,1 K}	(Zn)	290,558 (10)	0,060 (3)		

		Energy keV		Photons per 100 disint.	
$egin{array}{c} XL \ XKlpha_2 \ XKlpha_1 \end{array}$	(Zn) (Zn) (Zn)	0,8836 - 1,1861 8,61587 8,63896		1,75 (5) 17,0 (6) 33,0 (12)	} Κα }
$egin{array}{c} { m XK}eta_1\ { m XK}eta_5^{\prime\prime}\ { m XK}eta_2\ { m XK}eta_2\ { m XK}eta_4 \end{array}$	(Zn) (Zn) (Zn) (Zn)	9,5721 9,6499 9,6581	} } }	7,08 (26)	$egin{array}{c} { m K}eta_1' & & \ { m K}eta_2' & & \ \end{array}$

- M.-M. Bé, V. Chisté, C. Dulieu, M.A. Kellett, X. Mougeot, A. Arinc, V.P. Chechev, N.K. Kuzmenko, T. Kibédi, A. Luca, and A.L. Nichols. *Table of Radionuclides*, volume 8 of *Monographie BIPM-5*. Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92310 Sèvres, France, 2016.

Closer agreement!

Simulations provide answers

- With an accurate EGSnrc model at our disposal, we can now look at the questions:
 - How does the uncertainty on a parameter affect measurement?
 - What is the calibration factor for a radionuclide not previously measured?
 - What is the calibration factor for a non-standard geometry?
 - What is the effect of radioimpurities?

Simulations can produce an absolute result

There was a problem with the detector model

- Initially, the modelled detector response was systematically low
 - An energy-dependent difference (~7%)

- This indicates a physical discrepancy:
 - Material properties (density, composition)?
 - Geometrical (wall thicknesses)?

We increased the gas pressure

- Varying within manufacturer tolerances could not account
- There was no tolerance on the nitrogen pressure (nominal 1MPa)
 - Increasing the pressure ~7% worked (chi-squared optimized)

• Therefore, our model **predicts** a 7% higher pressure

Turns out it's corroborated

• Strikingly, a previous group also found a 7.2% higher pressure by simulations of a similar chamber using PENELOPE

A De Vismes and MN Amiot. Towards absolute activity measurements by ionisation chambers using the penelope monte-carlo code. *Applied radiation and isotopes*, 59(4):267–272, 2003.

After a few minutes on the cluster...

Radionuclide	$k_{\rm mc}$	Statistical	$k_{\rm exp}$	Measurement	Percent
	(pA/MBq)	uncertainty	(pA/MBq)	uncertainty	difference
$^{7}\mathrm{Be}$	0.5195	0.1%	0.535	$1\%^{a}$	-2.89%
^{18}F	10.2901	0.1%	10.34	0.3%	-0.48%
²² Na	20.8103	0.1%	20.77	0.3%	0.19%
^{51}Cr	0.3326	0.1%	0.3353	2%	-0.82%
^{57}Co	1.2006	0.2%	1.225	0.4%	-1.99%
60 Co	22.1523	0.1%	22.24	0.1%	-0.39%
⁶⁷ Ga	1.5653	0.2%	1.583	0.4%	-1.12%
75 Se	3.9577	0.1%	3.988	$1\%^{b}$	-0.76%
⁸⁸ Y	22.6181	0.1%	22.53	1%	0.39%
$^{99}Mo^*$	2.6757	0.2%	2.689	0.4%	-0.50%
99m Tc	1.2409	0.2%	1.251	0.4%	-0.81%
¹¹¹ In	4.1374	0.1%	4.104	0.4%	0.81%
¹²³ I	1.7791	0.2%	1.774	0.4%	0.29%
^{125}I	0.4957	0.2%	0.485	0.6%	2.21%
^{131}I	3.9984	0.2%	4.033	0.3%	-0.86%
¹³³ Ba	4.2726	0.2%	4.298	0.6%	-0.59%
133 Xe	0.5057	0.3%	0.5055	$1\%^{c}$	0.05%
^{134}Cs	15.4777	0.1%	15.59	0.4%	-0.72%
^{137}Cs	5.7156	0.2%	5.741	0.6%	-0.44%
^{152}Eu	10.9677	0.1%	11.00	0.1%	-0.29%
^{153}Sm	0.6853	0.2%	0.6555	$1\%^{b}$	4.55%
192 Ir	8.5210	0.1%	8.481	0.1%	0.47%
201 Tl	0.9068	0.2%	0.8985	0.4%	0.93%
²⁰⁷ Bi	14.6426	0.1%	14.94	$1\%^{b}$	-1.99%
^{241}Am	0.2499	0.3%	0.2453	0.2%	1.87%

NCCNC